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Abstract. Biological sequence-based prediction, such as protein property prediction from
sequence, has progressed over the years from the use of relatively simple linear models to
complex neural networks. However, the scale of supervised training data has not matched that
of other fields, motivating the need for strong biological sequence-specific inductive biases
to enable strong performance by the neural networks. For example, recent work has shown
that regularizing a neural network in an “epistatic” basis—the Walsh-Hadamard basis—can
yield improved predictive performance for a neural network as compared to more standard
regularization such as on the L2-norm of neural network weights. However, past instantiations
of WH inductive biases do not account for the knowledge that higher-order epistatic terms
are less likely than lower order ones. Additionally, these WH-based methods can only be
applied natively to binary sequence data and have poor scaling properties. To address these
two shortcomings, we introduce a new kernel-based regularization of neural networks. Our
method leverages a variant of the ANOVA kernel that we develop for categorical data, which
can be computed in linear time with the sequence length. Through simulations and analysis of
real experimental data, we demonstrate the advantages provided by our method in comparison
to other prediction approaches.

Keywords: supervised prediction on sequences · inductive bias · Fourier regularization · ker-
nel · neural networks · Gaussian processes regression · implicit layer.



Epistatic-degree-regularized neural networks 1

1 Supervised learning on sequences

Supervised learning on the domain of amino acid and nucleotide sequences is pervasive in many
problems in biology. For example, predicting protein properties such as stability, binding, or cat-
alytic activity from protein sequence is a key element of machine learning-guided protein engineering.
Other examples include predicting the expression level of a gene from its sequence or the pathogenic-
ity of a virus from its sequence. Although predictive tasks may also make use of structure, most
predictive tasks will always require sequence, the topic of our work herein. Over the years, these
classification and regression tasks have employed a wide range of models, from linear models with
few or no epistastic terms to decision trees as well as neural networks, especially recently, as data and
compute volume have increase dramatically. As in many other fields, neural networks have proven
themselves competitive for such tasks [9]; we will focus on these models. Architectural innovations
and inductive biases in neural networks have been largely tailored to problems in computer vision
and Natural Language Processing, with one notable exception being the incorporation of physical
constraints/biases, typically as they pertain to rotational symmetries [8, 12], such as in structure
prediction [13]. To make faster progress, a thoughtful revisiting of appropriate inductive biases for
the domain at hand may prove useful.

For neural networks that operate on discrete biological tokens such as amino acids or nucleotides,
it has been shown theoretically under some conditions that neural networks on discrete inputs tend
to learn lower degree epistastic terms earlier in the learning process[29, 10]. However, there has been
no explicit work to formally regularize a neural network with the knowledge that most biological
functions depend mostly on lower order terms, such as non-epistatic terms, followed next by pairwise
epistasis, and so forth—that is, we expect on average that higher-order epistastic terms are less likely
than lower-order ones. Rather, application of neural networks in biology almost uniquely regularizes
the neural network parameters themselves, which do not in general correspond directly to epistastic
terms in a linear model where our prior knowledge lies. In other words, unlike in, for example,
computer vision, where convolution captures prior knowledge about the spatial domain of images,
in biological sequence learning, there is a mismatch between the “currency” of our prior knowledge
and that of the parameters of the neural network. We seek to find a generally useful inductive bias
for sequence-based prediction, similarly to how convolutions have been in many other domains.

Recent work has tackled the issue of imposing an inductive bias on epistatic terms for networks
on biological alphabets by regularizing neural networks in the Walsh-Hadamard (WH) basis [2, 10].
However these approaches can only natively handle binary alphabets and thus do not readily extend
to biological sequences comprising either four, or 20-letter alphabets. This binary limitation presents
either a fundamental representation issue, or a scaling issue, if not both. More importantly, the only
inductive bias these approaches can impose is that of K-sparsity on epistatic terms of all degrees, up
to and including the degree of the length of the sequence itself. That is, the inductive bias encoded
therein does not capture the knowledge that a 10th degree epistatic term is generally less likely than
a single-site or pairwise term, which goes against our understanding of the nature of most biological
landscapes.

Our contributions herein are to mitigate these issues and others by i) leveraging a generalization
of the WH basis that naturally extends to arbitrary-sized alphabets, ii) allowing the inductive bias to
prefer low-degree over high-degree epistatic terms (or any weighting of the different degrees desired),
and iii) bypassing explicit computation of all epistatic terms by using the kernel trick through
Gaussian process regression with ANOVA-based kernels modified to handle discrete sequences. We
also develop a new way to compute this discrete ANOVA kernel that is vastly more efficient, by both
reducing the time complexity to linear in sequence length and optimizing it for parallel computation
on GPUs. To enable our overall approach, we make use of the implicit function theorem in an
“implicit layer” [3] containing the Gaussian process regression for the regularization, so that we can
more efficiently perform gradient descent through the regularization term in the loss function. We
call our approach Epistatic-degree-regularized (EDR) neural networks, or EDR-NNs for short.
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2 Related Work

An overall discussion on prior work of “simplicity” biases in neural networks—primarily focused on
continuous inputs and single-dimension input and outputs—can be found in Gorji et al. [10]. To
the best of our knowledge, the first to consider “epistatic” regularizaton of neural networks was
performed by leveraging efficient algorithms for K-sparsity from compressed sensing, employing an
L1-regularization on the implied epistatic terms of the neural network [2]. As mentioned earlier, this
approach is not generalizable beyond binary input tokens and cannot impose different regularization
on different degree epistatic terms. The presented method requires a number of approximations to be
made in computing the required WH transform because of the combinatorial nature of the problem.
In fact, we speculate that any method for performing this general class of regularization will similarly
require some level of approximation, and the interesting and impactful questions are whether certain
approximations are more useful than others, due to either accuracy or computational efficiency.

Following up on the work of Aghazadeh et al., Gorji et al. [10] aim to perform the same regu-
larization, but, by using a more efficient method of approximation to the WH transform used for
regularization, they achieve dramatically faster runtimes than Aghazadeh et al., which allows them
to make fewer accuracy sacrifices in order to manage runtime. An elegant and practically useful
aspect of their solution is the ability to set a hyper-parameter to gracefully trade off between the
exact regularization, which is computationally impractical, to one that approximates the exactness
more and more. The key idea is to use a hash function to collapse WH coefficients into 2b bins,
where this number is less than the total number of coefficients, 2n, for pseudo-boolean functions on
n binary features. With the hashing, their method scales with 2b, rather than with 2n. The extent
to which important coefficients with different signs get hashed into the same bin, is the extent to
which this approximation will break down.

Unlike these previous works [2, 10], both of which can impose only one specific inductive bias—
K-sparsity on the WH coefficients—our proposed method is able to impose any inductive bias that
can be described by the degree of the WH coefficients. This means we can, for example, impose an
inductive bias such that higher-order epistatic coefficients are more likely to have smaller values, by
way of a degree-specific L2-regularization on each set of coefficients specified by degree. Furthermore,
we do so without explicit computation of individual epistatic terms, instead appealing to kernels so
as to estimate the overall effect of each degree of epistasis.

3 Epistatic-degree-kernel-regularized neural networks

Before delving into the details of our method, we present some background knowledge that will be
useful for our method development. For clarity and accessibility of presentation, most of the technical
narrative is presented for binary sequence tokens. However, we later generalize to sequences with
larger alphabets. Further technical details are available in the Appendix.

3.1 Linear additive models as universal function approximators

First, note that any non-linear function y = f(x), on a sequence of binary tokens, x, for y ∈ R,
can be written as a linear additive model that contains all possible epistatic terms. That is, for a
sequence of length L, any such function can be represented uniquely as a linear combination of 2L

epistatic terms:

f(x) =
∑

S⊆[L]

αS

∏
i∈S

xi, (1)

where [L] := {1, . . . , L} and each monomial,
∏

i∈S xi is one interaction term of epistatic degree |S|.
If we restrict S to contain only single positional terms (|S| = 1), then the model would be a “site-
specific” model. If we also allow |S| = 2, then the model would include pairwise epistastic terms. To
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enable this linear additive model to be a universal function approximator, we must allow all S, which
thus includes those up to and including |S| = L. A more common example of a similar phenomenon
is that for continuous inputs, a universal function approximator can be constructed in the form
of a linear additive model with a complete polynomial basis function expansion of the features. In
both cases, although this parametric form can encode any function, rarely does such a functional
form yield the most accurate predictions after being trained on a finite data set, owing to the lack
of inductive bias. One might consider regularizing a linear additive model in this combinatorial
feature space but such models quickly become intractable as sequences grow. Instead, we seek to
leverage the power of neural networks, which implicitly can cover this space, but adaptively without
explicit enumeration of all monomials. Typical neural network inductive biases arise from parameter
initialization, the use of gradient descent, architecture choices, L1- and L2-regularized weights, and
dropout, for example. None of these techniques, however, enables us to regularize in the space of
monomials described by Equation 1—the space where our prior biological knowledge lies.

Given a function y = f(x), if we knew all values of y for all possible values of x, then computing
what is known as the WH transform would yield the monomial coefficients, αS , in Equation 1. This
transform provides the foundation upon which other recent work has regularized neural networks
on biological sequences [2, 10]. However, herein, we bypass such an explicit transformation, instead
relying on estimating the overall effect of all epistatic terms of each degree—that is for degrees
d = 1, 2, . . . , L, where recall L is the sequence length, by use of the kernel trick, which only implic-
itly makes use of the full combinatorial set of epistatic terms. Specifically, we use a generalization of
what is called an ANOVA kernel [22]. We will use the kernel trick by way of Gaussian Process regres-
sion [19], as an implicit layer [11] in the regularization loss of our neural network. This regularization
loss will encode our prior epistatic beliefs at the degree level.

3.2 Desired inductive bias by way of the ANOVA kernel

The goal of the ANOVA kernel function [21] for degree, d, is to efficiently compute the inner product
distance between two sequences x1 and x2, when they have been expanded into the full epistatic
basis of Equation 1. For example, the ANOVA kernel for d = 1 would simply compute the inner
product of the raw sequences, whereas the ANOVA kernel for d = 2 would compute the inner
product of sequences when encoding them using only all pairwise features. Notably, the ANOVA
kernel of degree d, only (implicitly) makes use of features of that degree, and not lower or higher,
unlike the more widely-known polynomial kernels, which include all features up to and including
the degree of the kernel. As a consequence, we can first use the ANOVA kernel to group together
the epistatic terms by degree and then estimate the norm of the epistatic (WH) coefficients for each
degree. Ultimately, this will let us regularize our neural network differently for each epistatic degree.

More formally, the ANOVA kernel function of order d, Kd(x, x
′) = ⟨Φd(x), Φd(x

′)⟩, is the inner
product between the dth degree epistatic expansion of sequence x and that of sequence x′. The
feature map, Φd(x), corresponds to all

(
L
d

)
epistatic terms of order d:

Φd(x) =

(∏
i∈S

xi

)
S⊆[L],|S|=d

. (2)

By way of dynamic programming, the ANOVA kernel can be computed with time complexity
O(Ld) [21], rather than the naive computation of O

(
L
d

)
. However, as shown in AA.2, by restricting

ourselves to categorical sequences, we develop a more efficient algorithm yet, with time complexity
O(L+ d), plus some precomputations.

We can now re-write Equation 1 with the implicit feature space of the ANOVA kernel,

f(x) =

L∑
d=0

αT
d Φd(x),where αd ∈ R(

L
d) ≡ (αS)S⊆[L],|S|=d . (3)
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So long as the prediction algorithm accesses inputs only through their inner products in these implicit
spaces, we can make use of the kernel trick. We will do so by way of the machinery of Gaussian
process regression to help us regularize our neural network, which we explain in Section 3.3.

Previous work imposes regularization in the form of K-sparsity on the individual WH transform
coefficients—namely, αS in Equation 1 and applies equal regularization strength across all terms
of all degrees [2, 10]. However, this inductive bias counters prevailing beliefs that many sequence
functions of interest in biology (and beyond) are likely governed by Occam’s razor: that simpler
functions—here, those with lower-degree epistatic terms—are more the rule, while higher-degree
epistasis are more the exception. For example, WH spectral decomposition of the fitness function
of the Entacmaea quadricolor fluorescent protein [17] shows that 87% of the energy in WH space is
contained in degree 1 and 2 terms, and > 99% is contained within the first five degrees. A.3

Consequently, our goal is to instead impose regularization at the level of epistatic degree, decou-
pling the strength of the regularization at each degree. Specifically, we add a regularization loss to our
neural network loss function that encodes these beliefs. In its most general form, our regularization
loss takes the form:

Lreg(α) =

L∑
d=2

λd∥αd∥22, where α ∈ R2L ≡ (αd)d∈{0,1,...L} (4)

and contains d− 1 hyper-parameters. The reader may notice we have omitted d = {0, 1}, which do
not get regularized. These represent respectively the bias effect, and the “single-site” effects, both of
which we should be well-powered to estimate, and hence leave unregularized. The ∥αd∥2 terms are
sometimes referred to as the “energy” for degree d [2] and can also be interpreted as the amount of
variance explained by each epistastic degree in Equation 3. Because it has been observed that the
decay in energy by epistatic order follows a roughly exponential rate [7], we correspondingly assign
each ||αd|| an exponentially growing penalty. Specifically,

λd = λ0e
d where d ∈ {2, ..., L} (5)

Where λ0 is a hyperparameter that controls the overall regularization strength across all epistastic
degrees. One could also adjust the base of this exponent to better match specific domain knowledge.
Because ed grows exponentially and in natural fitness functions ||αd||22 decays exponentially with
respect to d, latter terms in Equation (4) become very sensitive to rounding error. To avoid this, we
lump all terms past d = 5 into a single term, resulting in the following:

Lreg(α) = (

5∑
d=2

ed∥αd∥22 + e6
L∑

d=6

∥αd∥22), (6)

Where we’ve dropped λ0. We’ll see it reappear in 3.3 as a regularization strength hyperparameter

3.3 Connecting the regularization and neural network losses

Applying the desired regularization, specified in epistatic degree “currency” ({αd}), to a neural
network, g(x;w), with “currency” of parameter weights (w), will require some creativity because
of the mismatch in these currencies. Let us start by simply writing the overall loss in these mis-
matched currencies. For the neural network, we assume a Gaussian likelihood for the predictive
model, p(y|x), with homoscedastic noise, which reduces to the familiar Mean Squared Error (MSE)
loss for estimating the parameter weights, w. Together with our regularization loss, the overall loss
is thus

L(w) =
∑
i

(g(xi, w)− yi)
2 + λ0Lreg(α), (7)
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where the training data are denoted, D = {(xi, yi)}. However, given the currency mismatch, as

written, we have no way to optimize it because it is unclear how to compute ∂L(w)
∂w , given that we do

not know how to compute ∂αd

∂w . We will need to first be able to compute the mapping αd = αd(w),
discussed next.

The naive way to compute αd = αd(w) would be to use a WH transform of g(x; ŵ), and then to
add up the squared L2 norms of the WH coefficients of degree d to obtain αd(ŵ). However, since our
desired regularization does not require the individual coefficients, it turns out that we can instead
directly estimate {αd} using the kernel trick, and in particular the ANOVA kernel described above,
by way of GP regression. That is, we will estimate αd(ŵ) directly through a GP regression, without
ever going into the WH basis.

In particular, if we assume each αd ∼ N (0, σ2
d) and n samples of the inputs and outputs of our

neural network, {(xi, ŷ = g(xi; ŵ)}ni=1, we can stack all these inputs and outputs into matrices,

(X, Ŷ ), a GP naturally arises with the model likelihood:

Pr(Ŷ |X) ∼ N (Ŷ ; 0,

L∑
d=0

σ2
dK̄d) (8)

where K̄d is the Kernel matrix on the training data, X, using the dth-degree ANOVA kernel function,
Kd(x, x

′) that has been normalized to have ones on the diagonal, and {σ2
d} are free parameters to

be estimated. Evidently, any good estimate of {σ2
d} must also be a good estimate of {∥αd∥22}, since

E[∥αd∥22] = σ2
d.

One can estimate these {σ2
d}, in Equation 8 using either MLE, or Method of Moments (MoM)

which matches the covariance to the empirical covariance. The solution to the MoM loss function has
a closed form that can be computed in linear time and is thus immediately differentiable with respect

to the weights of the neural network, w—for which the dependency comes through σ̂2
d = σ̂2

d(ŵ), and
which is required to optimize our main loss function in Equation 7 (see A.4 for details). However,
MoM is known to be statistically less efficient, here requiring samples covering nearly the entire
domain of g to provide an accurate parameter estimate. In contrast, obtaining the MLE solution
is computationally expensive, naively scaling cubically with the number of training data; however,
MLE, yields good estimates with far fewer samples. Also, as solving for the MLE solution is an
iterative procedure requiring gradient-descent, the solution is not trivially differentiable with respect

to the weights of the neural network. This poses a challenge in computing ∂L(w)
∂αd

, required to optimize
our overall loss in Equation 7.

Given all possible samples, {(xi, ŷ = g(xi; ŵ)}, both MoM and MLE can perfectly estimate

the neural network epistatic-degree energies, σ̂2
d = ||αd||22. For any sub-sample, the estimates will

be exact, with MLE providing the more accurate estimates for a given sub-sample size. Similarly
to [10], the number of such samples will also provide us with a knob we can turn to gracefully trade
off accuracy of the estimate with speed of the computation. Notably, as in Gorji et al., the tradeoff in
accuracy is only for the regularization loss, not the neural network loss itself. We can now update our
overall loss to reflect the fact that we have tied together the currencies, such that each component
is now a function of neural network parameters, w:

L(w) =
∑
i

(g(xi, w)− yi)
2 + λ0

L∑
d=2

ed||σ̂2
d(w)||22, (9)

Because MLE is statistically more efficient, it is our preferred method of estimation, although for
some small-scale experiments we make use of MoM because of its speed. However, the issue is
that when using MLE for the GP estimation, the mapping between w and σ̂2

d is only implicit,
because of MLE’s iterative gradient descent procedure. Consequently, the required derivative, ∂αd

∂w is
not readily computable. Although in principle one could let modern day auto-differentiation unroll
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the computation graph to calculate the required meta-model loss function gradient, this would be
prohibitively computationally expensive. Instead, we can rely on the implicit function theorem to
construct an “implicit layer” [3, 5, 14] that abstracts away the inner optimization problem to avoid
differentiating through the unrolled inner optimization steps.

Roughly speaking, the way this works is that the forward pass of back-propagation is as one might
expect—that is, one optimizes the density loss. However, the backward pass only differentiates at
a fixed point of the density loss, namely, when the iterative solver to minimize the density loss
remains unchanged (e.g., the gradient is zero and does not change). This is accomplished by use of
the implicit function theorem. Further details can be found in [1].

3.4 Larger alphabets and generalization of ANOVA kernel

Our narrative started with the use of only binary sequence features for the regularization, as is
required by previous approaches [10, 2], and continued as such for clarity and intuition. However,
one of the advantages of our approach is that we can readily generalize our to non-binary alphabets
to natively accommodate nucleotide and amino acids. With a few key adjustments, all of the afore-
mentioned methodological development can be made to generalize to alphabets of any size, by way
of the Graph Fourier basis, a natural extension of the WH basis [6][26][24]. The intuitive outcome
of using this generalized basis is that each amino acid, for example, gets represented with a vector
of length 20 − 1 = 19, using an encoding that preserves certain symmetries that are required for
Graph Fourier analysis. Note we use vectors of length 19 to represent 20 tokens: this helps us avoid
colinearity. We make use of this same basis herein, the details of which are in A.1.

3.5 Putting it all together: EDR-NN

We have now progressively described all the moving parts: the desire to regularize a neural network
by epistastic degree; how to estimate the variance accounted for by each epistastic degree in a given
neural network with the help of a GP regression trained on inputs and corresponding outputs from
the neural network; and the need for implicit layer machinery to effectively compute the gradient of
our regularized neural network loss with respect to the GP regression model which yields a nested set
of optimizations—the GP optimization inside of the regularized neural network loss optimization.
Combining all of these yields our EDR-NN, for which there is an algorithm overview in the A.5.
Having written down our overall loss function and figured out how to efficiently take gradients of it,
our training is otherwise standard.

Code availability With written permission from the Program Chair for RECOMB 2024 (Jian
Ma), we submit our code as Supplementary Information rather than a GitHub repository. Upon
acceptance, we will publicly release the code.

4 Experimental Results

We performed two main sets of experiments. In the first, we construct a synthetic data set to
investigate how different inductive biases interact with i) the label noise level and ii) the size of the
training data. The second set of experiments are on real experimental data, where we compare the
performance of EDR-NN to the the WH-L1-regularization of Gorji et al., dubbed HashWH, and to a
standard neural network. For all experiments, we followed similar guidelines to determine our neural
network architecture, on which we applied both EDR-NN and HashWH: Assuming a sequence of
length L, we used a network architecture of (input shape)×(nL)×(nL)×L×1, where n is a multiplier
set equal to 10 for real data and 20 for our simulated dataset to foster faster convergence. These are
the same architecture guidelines as [10] and [2], adjusted to handle non-binary sequences as well.
All methods were implemented using Jax for more efficient implicit differentiation and trained and
evaluated on a combination of Nvidia GPUs with 10GB, 24GB, and 48GB of memory.
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4.1 Characterizing the effects of inductive bias with simulated data

To simulate a ground-truth fitness function which maps sequence to protein property, we follow
Busia et al., describing only a high-level overview here [7]. We used a linear function with randomly
generated epistatic effects—random in which effects, how many effects, and what their values are.
Epistatic effects of all orders were allowed, but the specific ones were sampled randomly based
on the empirical distribution of such effects observed for the Entacmaea quadricolor fluorescent
protein [17], combined with the observation that number of contacts in a protein scales linearly
with sequence length [4, 27], which has been shown to inform on the epistastic landscape [6]. Our
synthetic sequences comprised all 210 binary sequences of length 10. We labeled each of these with
the simulated fitness function and then added homoscedsatic Gaussian noise with variance, σ2 to
simulate noisy, observed property values. We ran experiments with values of σ2 ∈ {1, 4, 9, 16, 25}.
For reference, the empirical variance of the simulated, noise-free ground truth labels was 11.04.

We compare and contrast three modeling approaches, all using one identical architecture, differing
only in how that architecture was regularized. One was not regularized, ”Standard NN”, one was
regularized using ”HashWH” [10], and one using ”EDR-NN”. HashWH has a tunable parameter b
that trades off speed with exactness, and we set this parameter such that HashWH is exact (i.e.,
b = 10 which yields 210 hash bins such that no collisions can occur). Similarly, for EDR-NN, we use
MoM estimation for the GP regression with all the 210 = 1024 possible sequences. For training data,
we used 500 sequences and labels chosen at random from the 1024, with the remaining 524 used as
test data.

First we examine the predictive accuracy as a function of label noise. As we increased the noise
variance added to the noise-free fitness labels, the performance of all methods goes down, as expected.
More interestingly, the unregularized model goes down fastest, then HashWH goes down next fastest,
followed lastly by EDR-NN(Figure 1a). Thus, when data are generated with the distribution of
epistatic interactions based on the epistatic fitness simulation of Busia et al., then our method
provides more robustness against noisy labels. Experiments on the real data will shed some light on
how realistic that assumption is.

Next we examined the recovery of the epistatic energy landscape as a function of label noise,
for each of the methods. We see that for all methods, the recovery becomes harder and harder
with increasing noise, but that similar patterns to predictive accuracy occur, with EDR-NN being
the most robust noise, followed by HashWH, followed by the unregularized model (Figure 1b). A
comparison of the full degree-wise energy landscape is in A.6

4.2 Experiments on real protein data

We compare and contrast the performance of same three methods as in the previous section on real
datasets. Additionally, we performed Gaussian Process regression and kernel ridge regression with
α = 0, and standard L2 regression also referred to as Ridge regression as baselines with decreasing
levels of complexity. For Gaussian Process regression, we considered a linear combination of general-
ized ANOVA kernels up to degree 5 plus a noise term as the covariance matrix, with the coefficients
treated as hyperparameters, selected by maximizing the marginal log-likelihood log(Pr [y | X]) with
respect to the coefficients. For the kernel ridge regression, we use a sum of all ANOVA kernels from
degree 0 through to 10 to ensure that all significant terms were considered, resulting in a completely
unregularized model.

We apply these 5 methods to four protein data sets: fluorescent protein in Entacmaea [17]; GFP
from [20], AAV Capsid from [23], and Yeast his3 from [18]. More details on the selection process of
these dataset are in A.7.

From each protein, we set aside 1, 000 sequence-label pairs for testing, and from the remainder,
chose N ∈ {20, 40, 80, 160, 320} sequence-label pairs for training. We re-sampled these training sam-
ples 10 times over which we could assess our results for variability. All data were used at the amino
acid level (rather than nucleotides).
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Fig. 1: Simulated experiments: a., Test set prediction accuracy, measured by R2, as a function
of label noise. b., Recovery of epistastic energies at each degree, as a function of label noise. X-axis
has been randomly jittered to help avoid overlapping.
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Fig. 2: Average test set prediction accuracy, measured by R2, across all datasets. Error bars are
95% confidence intervals on the sample mean, computed by bootstrapping. Sizes have been randomly
jittered to minimize overplotting. In both plots, 95% confidence intervals around the sample mean
were generated by bootstrapping

For each training data set size N , we performed hyperparameter selection for the learning rate
and batch size on only the unregularized neural network, and then used this setting for all of the
methods. The number of epochs setting was set to that maximum used for the optimal batch and
learning rate, and then all three of these parameters were used for all further experiments. We did not
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Fig. 3: R2 vs training set size for a., Entacmaea, b., GFP, c., his3, and d., AAV Capsid. Error
bars are 95% confidence intervals around the sample mean computed using bootstrapping, and the
legend is consistent across all figures.

perform architecture search, instead relying on the same heuristic as related papers, which precisely
prescribes a neural network to use [10, 2].

The regularization for HashWH and EDR-NNstrength were each set by a separate hyperparam-
eter selection sweep, using the already set learning rate, batch size and maximum number of epochs
as just described. For HashHW, we searched over α = {0.0001, 0.001, 0.01, 0.1}, the same values as
used in their work. For EDR-NN, we also searched over α = {0.0001, 0.001, 0.01, 0.1}. We did similar
sweeps over larger ranges for ridge regression and Kernel Ridge Regression, but interestingly Kernel
Ridge always performed best with α = 0, meaning it performed best when completely unregularized.
Both HashHW and EDR-NNonly approximately estimate the needed epistatic coefficients/energies
for their respective regularization. For HashHW, the degree of approximation is dictated by the
hyperparameter b, which yields 2b hash bins, and also dictates that 2b neural network samples are
needed to estimate their approximate WH transform with each gradient step of the neural network.
They sweep through b = {7, 10, 13, 16}, and note that generally, the larger b, the better the per-
formance. Since either our GPU or computer ran out of memory when we selected b = 16, we set
b = 13 for all experiments. Gorgji et al.select 16 only for on the GFP data set. For EDR-NN, the
degree of approximation is dictated by the number of samples used to estimate the parameters of the
GP regression, which we fixed at 500, which constitutes 500

|A|L of the total number possible. We used

MLE to estimate the parameters of the GP regression model. All method-dependent hyperparame-
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ters were selected, for each N , using 5 train-validation splits of the training data (i.e.not touching
the 1, 000 test points originally held out).1

One final note is that the method of Gorji et al./ (and similarly Aghazadeh), can only work
natively with binary alphabets. In those papers, they consequently had to binarize their data if it
was not already in binary form. For example, for GFP, instead of allowing all twenty amino acids,
they converted the data into “wild type” amino acids, vs not. Since this did not seem a realistic
endeavour, herein, we instead used a one-hot encoding, thereby retaining information for all amino
acid values.

Results on real protein data sets Averaging the results across all four data sets, we see the
trend that EDR-NN performs maximally for small datasets, but is surpassed by the GP regression
for larger datasets. HashWH lags behind both but is a close contender, followed by kernel ridge
regression (Fig. 3) and ridge regression. Looking more closely at the invidual protein results, we
observe that GP regression and kernel ridge regression substantially outperform the other methods
for GFP, with EDR-NN and HashHW largely tied below. For AAV Capsid and Entacmeae, EDR-NN
performs best for the smaller training data set sizes, and then performs more on par with HashWH
and worse than the GP regression for larger training data sizes. Finally, on Yeast his3, the kernel
ridge regression with seems to perform best by a small margin, with the other methods tied, other
than ridge regression that lags behind. (Fig. 2)

5 Discussion

We developed a new method to regularize neural networks in a manner that allows for different
regularization strength for each epistatic order, in an L2-norm sense. The flexibility of this regular-
ization framework enabled us to explore regularization of protein fitness models to more strongly
regularize higher order epistatic terms, as a group, by way of an ANOVA kernel as a regularizer to
a neural network. We showed that under plausible simulation scenarios of epistatic landscapes, that
our approach behaves sensibly, and outperforms other models that encode different inductive biases.
On real data, we find that overall, our model may provide an improvement, but that kernel methods
using our generalized ANOVA kernel can perform quite well. In fact, GP regression did not perform
substantially worse than the standard MLP in any of the datasets and sometimes outperformed it
substantially, even beating out the regularized MLPs.

A number of further directions would be worth exploring. First one limiting element of EDR-
NN as is, was the cubic time complexity of the GP regression parameter estimation, limiting the
accuracy with which we could estimate the epistastic energies. We anticipate that by leveraging
existing innovations from the GP community, such as the use of pseudo-points, and so-forth, that
we may extract better statistical power yet. We may be able to choose training samples more
intelligently, such that they are jointly more informative.

1 Both Gorji et al.[10] and Aghazadeh et al.[2] for reasons that are not clear, use a validation set that is
substantially larger (up to 100 times) than the training data, an odd choice that we did not replicate.
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A Appendix

A.1 Description of the Fourier Basis

To use larger alphabets, we use the generalization of the WH matrix described by [6] (see sections
titled Fourier Bases for Fitness Functions and Materials and Methods: Fourier Bases); we adopt
their convention of calling this generalization the Fourier matrix. Like the WH matrix, the Fourier
matrix is defined recursively. Let X ∈ AL where q := |A| is the size of the alphabet, A, and denote

Pq := Iq −
2wwT

∥w∥22
, (10)

where Iq is the q× q identity matrix, w := 1q −
√
qe1, 1q is the vector of all ones, and e1 has its first

element set to one and the rest zeros. Each row of Pq corresponds to a different length-1 sequence.
The first column is constant for all rows, while the remaining q − 1 elements uniquely identify an
alphabet element. Specifically, if we write

Pq =
1
√
q

[
1q | P ′

q

]
, (11)

where | denotes column-wise concatenation, then each row of P ′
q constitutes a length-(q−1) encoding

of an element of the alphabet. We will let pq(a) denote the row of P ′
q that encodes alphabet element

a, which can be assigned arbitrarily. To define FL, the Fourier matrix for sequences of length L with
alphabet size q (we will ignore dependence on q in the notation for simplicity), we set F1 := Pq and

FL = FL−1 ⊗ Pq, (12)

where ⊗ denotes the Kronecker product. Note that ΦL = HL when A = {−1, 1}. As in the binary
alphabet case, each row of the Fourier matrix contains all possible epistatic interactions of a sequence.
Note that while in the binary case, an order-d epistatic term of the sequence X is encoded by a single
scalar,

∏
i∈S Xi ∈ {1,−1}, in the case of larger alphabets, an order-d epistatic term is encoded by a

vector of length (q − 1)d. In particular, the vector encoding the interaction between the sites in set
S is given by

FL(S) =
1√
qL

⊗
i∈S

pq(Xi). (13)

A row of the Fourier matrix is the concatenation of these encodings for all possible sets, S ⊆ [L].
This generalized encoding preserves the property that any function from a sequence can be

represented as a linear function of the generalized feature embedding. Namely, for any fitness function
f : AL → R can be represented uniquely as a sum of linear functions of the embeddings of all possible
subsets:

f(X) =
∑

S⊆AL

α⃗S · FL(S), (14)

where α⃗s ∈ R(q−1)|S|
.

A.2 Proof of correctness fast ANOVA kernel

First, we start by proving that Kd(x, x
′) has a closed form solution with respect the he hamming

distance, H between x and x′
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Proof. Note that for each S ⊆ [L] such that |S| = d, S can include anywhere from 0 to min(d,H)
“disagreeing” indices, that is indices where x disagrees with x′. Let ∆S = |{i ∈ S|xi ̸= x′

i}| be the
number of disagreeing indices in S. Now we have:∏

i∈S

xi ·
∏
i∈S

x′
i =

∏
i∈S

xix
′
i

And since xix
′
i = 1 if xi = x′

i and −1 otherwise,∏
i∈S

xix
′
i = (−1)∆S

Now,

Kd(x, x
′) =

∑
|S|=d

∏
i∈S

xix
′
i

=

min(d,H)∑
i=0

∣∣{S ∈ [L]
∣∣ |S| = d,∆S = i

}∣∣ · (−1)i

=

min(d,H)∑
i=0

(
L−H

d− i

)(
H

i

)
· (−1)i

=

d∑
i=0

(
L−H

d− i

)(
H

i

)
· (−1)i,

Since
(
H
i

)
= 0 if i > H. ⊓⊔

Because this is solely a function of H, and otherwise independent of the elements of X and X ′,
we can do a single O(Ld) (which is the cost of running each ANOVA kernel computation with the

standard computation method) pre-computation step to compute the term
∑d

i=0

(
L−H
d−i

)(
H
i

)
∗ (−1)i

for each H ∈ {0, ..., L}, and then every subsequent kernel computation can be computed O(L) time,
since for any given x, x′, we only need to compute |x − x′|H , and then perform a constant-time
retrieval operation. If we would like to compute the kernel for multiple values of d, the cost becomes
O(L+ d).

Now, we will prove an almost identical claim for the general Fourier Basis described in A.1 We
would like to compute

Kd(X,X ′) = ⟨Φd(x), Φd(x
′)⟩ (15)

where Φd are defined almost identically as in the binary case:

Φd(x) = (FS)S⊆[L],|S|=d (16)

Except these Kronecker-product defined FS embeddings replace the monomials we saw in the binary
case. To compute the inner product of this featurization for two sequences, we can again leverage the
fact that the inner product is solely defined by the hamming distance between the two sequences.

Claim. For ∀X,X ′ ∈ An such that |x− y|H = H,

Kd(x, x
′) =

1

qL

d∑
i=0

(
L−H

d− i

)(
H

i

)(
q − 1

q

)d−i(
−1

q

)i

(17)
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Proof. First, we must note that

PqP
T
q = (Iq −

2wwT

∥w∥22
)(Iq −

2wwT

∥w∥22
) (18)

= Iq − 2
2wwT

∥w∥22
+

2wwT

∥w∥22
2wwT

∥w∥22
(19)

= Iq − 4
wwT

∥w∥22
+ 4

wwTwwT

∥w∥42
(20)

= Iq − 4
wwT

∥w∥22
+ 4

wwT

∥w∥22
(21)

= Iq (22)

And since each row of Pq corresponds to
[

1√
q | pq(a)

]
for an a ∈ A, the ∀a, b ∈ AL

1
√
q
· 1
√
q
+ pq(a) · pq(b) =

{
1, if a = b

0, otherwise
(23)

=⇒ pq(a) · pq(b) =

{
q−1
q , if a = b

1
q , otherwise

(24)

Now let S ⊆ [L], and once again, let ∆S = |{i ∈ S|Xi ̸= X ′
i}| be the number of disagreeing indices

in S. 〈
1√
qL

⊗
i∈S

pq(xi),
1√
qL

⊗
i∈S

pq(x
′
i)

〉
(25)

=
1

qL

〈⊗
i∈S

pq(xi),
⊗
i∈S

pq(x
′
i)

〉
(26)

=
1

qL

⊗
i∈S

⟨pq(xi), pq(x
′
i)⟩by the mixed product prop. (27)

=
1

qL

(
q − 1

q

)d−∆S
(
−1

q

)∆S

(28)

And we can repeat the counting argument from the binary case to get the desired summation. ⊓⊔

Clearly, this generalized kernel computation has the same runtime as the binary case,
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A.3 Energy Landscape of Entacmaea
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Fig. 4: Percent of Energy Explained by Each Degree of Epistasis in Entacmaea

This figure is generated using code from [10] used to generate Fig 4.d, except observing all
epistatic interactions instead of just the top 100.

A.4 MoM Closed Form Solution

Estimating σ2
ϵ , σ

2
d such that y ∼ N(0,

∑L
d=0 σ

2
dKd + σ2

ϵ I) is actually a common problem in heri-
tability estimation. See [16] for more background. Unlike in GP literature, heritability estimates
are frequently done with Method of Moments, partially because they do not necessarily assume a
Normal distribution. We can start with Equation 7 of [16]:[

T b
bT N

] [
σ2

σ2
e

]
=

[
c

yT y

]
(29)

Where T is a d× d matrix with entries Tk,l = tr(K̄kK̄l) and c ∈ Rd is defined so that cd = yTKdy.
We can ignore all other terms because we are in a noiseless regime, so σe is 0.

We know Kk = ϕ(X)Tk ϕk(X), so

tr(K̄kK̄l) =
1(

L
k

)(
L
l

) tr(ϕk(X)Tϕk(X)ϕl(X)Tϕl(X)) (30)

And since each ϕd is a submatrix of an orthogonal ϕ matrix, if k ̸= l then tr(K̄kK̄l) = 0 and 1 if
k = l, which leaves us with σ2 = c, which implies σ2

d = cd = yTKdy solves our normal equation, and
we are done. One can easily verify by similarly decomposing the y and Kd explicitly into y = ϕ(X)α
and Kd = ϕd(X)Tϕd(X) that if we have all samples, then cd = yTKdy = ∥αd∥22, since then ϕ(X) is
a full orthogonal matrix.

A.5 Complete Algorithm
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Algorithm 1: EDR-NN

1 def EDR-NN(model, find sigmas, lr, data loader, reg alpha, num epochs):
2 model.init() ;
3 optimizer = Adam(lr) ;
4 for epoch in num epochs do
5 for X train, y train in data loader do
6 y preds = model(X train) ;
7 mse loss = MSE(y train, y preds) ;
8 mse grads = grad(mse loss) ;
9 alpha preds = find alphas(model, method = MLE) ;

10 reg loss = sum([ed * alpha preds[d] for d in range(2, 6)]);
11 reg grads = grad(reg loss) ;
12 optimizer.update(model, mse grads + reg alpha * reg grads);

13 end

14 end
15 return model;

16 def find sigmas(model):
17 if method == ‘MLE’ then
18 X sample = sample from domain() ;
19 Kernels = compute kernels(X sample, X sample);
20 y sample = model(X sample);
21 return argmaxσ(y sample, Kernels);

22 end
23 else if method == ‘MoM’ then
24 X sample = sample entire domain() Kernels = compute kernels(X sample, X sample);
25 y sample = model(X sample);
26 return y sample.T @ Kernels @ y sample * (alphabet size ** sequence length;

27 end

28 def MLE objective(sigmas, y sample, Kernels)):
29 Cov = sum([s d * K d for s d, K d in zip(sigmas, Kernels)];
30 return GaussianLogLikelihood(y sample; 0, Cov)
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A.6 Comparison of degree-wise energy landscapes of different models on simulated
data
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Fig. 5: Degree-wise energy landscape of each model.
Closer to black line is better.

Note that as the variance of noise increases, HashWH and the Standard MLP hallucinate higher
order interactions, while EDR-NN does a much better job of staying faithful to the ground truth
energy landscape, even when the signal to noise ratio is quite poor.

A.7 Dataset Selection and Curation

We considered all datasets in ProteinGym [15] that had assay-labelled data on sequences with more
than 4 mutations away from wildtype, so as to have access to complex epistatic landscapes, of the
kind we anticipate will be more routine than those comprising single, or single and some pairwise
mutations. There were only four such datasets: GFP [20], Yeast his3 (called his7 in ProteinGym)
[18], AAV Capsid [23], and Yeast GCN4 [25]. Of these four, we chose not to work with GCN4 because
in all our our training set sizes, all methods were performing with R2 < 0.1.

We also considered all of the real protein datasets used on [10]: Entacmaea, a combinatorially
complete dataset on four positions of GB1 [28], and a binarized form of the GFP dataset, where each
position is converted to a 1 if that position is mutated from wildtype and 0 otherwise. Duplicate
sequences have their fluorescence values averaged. We omitted the GB1 dataset because the four
positions selected for combinatorial assaying were handpicked to be significant, which makes epistatic
interactions between those positions to be far more likely than they would be had the positions been
selected uniformly at random. As a result the “ground truth” fitness function derived from those
four positions will not observe the same strong decaying rate of epistatic energy as a natural fitness
function would, which our method assumes. We omitted the modifed GFP dataset because we are
including the complete GFP dataset in our experiments, and because when the dataset is binarized
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as such, it becomes relatively uninteresting, since averaging across all mutations in each position
neutralizes local extrema that arise specific mutations (as opposed to the presence of a mutation),
which are exactly the sequences of interest. We truncated each dataset around the DMS range, or
the smallest contiguous range of the protein sequence containing all mutations in the dataset, since
anything outside of that range is effectively a constant term that cannot inform learning.


